#### **PHYSICAL PROPERTIES**

#### 1. State

- Fats containing <u>saturated fatty acids are solid</u> at ordinary room temperature.
- The <u>animal fats</u> belong to this category.
- Most *plant fats*, on the contrary, possess <u>unsaturated fatty acids</u> and are, henceforth, liquid at room temperature.

#### 2. Colour, Odour and Taste

- When pure, the fats are colourless, virtually odourless and possess an extremely bland taste.
- They are capable of absorbing a variety of odours and hence flavour during storage. For the same reason, a house wife knows that the flavour of an onion quickly permeates butter that is stored with it in a refrigerator. In some cases, however, this absorbing property of fats is of advantage. For example, the perfumes of some flowers can be isolated by placing their petals in contact with the fat for a certain period, then extracting the fat with alcohol and concentrating the essence.

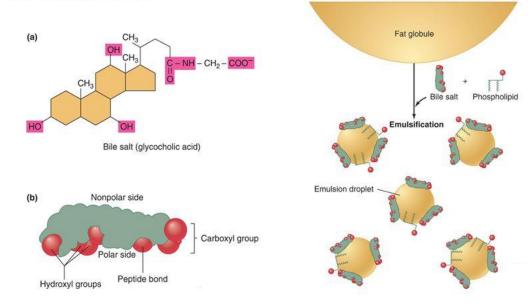
#### 3. Solubility

- The fats are, however, only <u>sparingly soluble in water</u>. These are, therefore, described as *hydrophobic* in contrast to the water-soluble or hydrophilic substances like many carbohydrates and proteins.
- However, these are freely soluble in organic solvents like chloroform, ether, acetone and benzene. These solvents, as they dissolve fats in them, are also known as' *fat solvents*'.
- The solubility of the fatty acids in organic solvents, in fact, decreases with the increase of chain length.

4. Melting point. The melting point of fats depends on the chain length of the constituent fatty acid and the degree of unsaturation. Fats containing saturated fatty acids from C 4 to C 8 are liquid at room temperature but those containing C 10 or higher saturated fatty acids are solid and their melting points increase with increasing chain length. With the introduction of double bond in the fat molecule, the melting point lowers considerably. It may be stated, in general, that greater the degree of unsaturation (or higher the number of double bonds) of the constituent fatty acid, the lower is the melting point of the fat. This may be easily visualized in terms of constituent fatty acids from the Table 14–1. In fact, short chain length and unsaturation enhance the fluidity of fatty acids and of their derivatives.

| Fatty acid  | No. of carbon atoms | No. of double bonds | M.P.<br>(in °C) |
|-------------|---------------------|---------------------|-----------------|
| Saturated   |                     |                     |                 |
| Caprylic    | 8                   | 0                   | 16.0            |
| Capric      | 10                  | 0                   | 31.0            |
| Lauric      | 12                  | 0                   | 44.2            |
| Myristic    | 14                  | 0                   | 53.9            |
| Palmitic    | 16                  | 0                   | 63.1            |
| Stearic     | 18                  | 0                   | 69.6            |
| Arachidic   | 20                  | 0                   | 76.5            |
| Behenic     | 22                  | 0                   | 79.9            |
| Lignoceric  | 24                  | 0                   | 86.0            |
| Unsaturated |                     |                     |                 |
| Palmitoleic | 16                  | 1                   | 11.0            |
| Oleic       | 18                  | 1                   | 13.4            |
| Linoleic    | 18                  | 2                   | - 5.0           |
| Linolenic   | 18                  | 3                   | -11.0           |
| Arachidonic | 20                  | 4                   | - 49.5          |

#### Table 14–1. Melting points of the common fatty acids\*


**5. Specific gravity.** The specific gravity of the fats is less than 1 (about 0.86) and, therefore, they float on water surface. Solid fats are lighter than the liquid fats. Oils spread on water to form thin monomolecular layers. In general, either unsaturation of the fatty acid chains increase or increase in chain length of the fatty acid residues tend to increase the specific gravity.

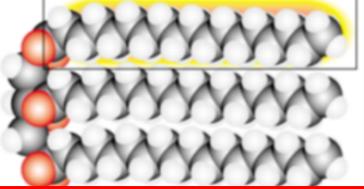
**6.** Geometric isomerism. As stated earlier, the presence of double bond (*s*) in the unsaturated fatty acid part of the fat molecule produces geometric (or *cis-trans*) isomerism.

7. Insulation. The fats possess *high insulating power*, *i.e.*, they are bad conductor of heat. A layer of fat below the skin provides a sort of blanket for warm-blooded animals (or *homoiotherms*). This is especially important for whales and seals which have to maintain a high temperature in cold waters. The fishes are cold-blooded animals (*or poikilotherms*) and, therfore, do not require maintenance of high temperature and so have very little subcutaneous fat.

**8. Emulsification.** It is the process by which a lipid mass is converted into a number of small lipid droplets. The fats may be emulsified by shaking either with water or with emulsifying agents like soaps, gums, proteins etc. An emulsifying agent helps in the production of a finely divided suspension of a fat in an aqueous medium. The hydrocarbon portions of the two (the emulsifier and the fat) tend to aggregate. This leaves the water-soluble group of the emulsifier projecting into the aqueous phase. A fat droplet will associate with a number of molecules of the emulsifier, thus producing a new water-soluble surface. Water molecules, henceforth, tend to be held in a layer or '*cloud*' around each droplet, thus disallowing the aggregation of the fat droplets

The process of emulsification is of great metabolic significance. In fact, the fats have to be emulsified before they can be absorbed by the intestinal wall. The process is accomplished by the bile juice secreted from liver.

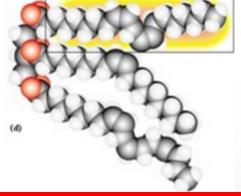



#### **Bile salt actions**

Bile: produced in liver, stored in gall bladder Emulsification in duodenum & upper intestine

# Saturated and Unsaturated Fatty Acids

#### Saturated Fatty acids


- The terms saturated, mono-unsaturated, and poly-unsaturated refer to the number of hydrogen attached to the hydrocarbon tails of the fatty acids as compared to the number of double bonds between carbon atoms in the tail.
- Saturated fats have all single bonds between the carbons in their fatty acid tails, thus all the carbons are also bonded to the maximum number of hydrogen possible...maximum possible amount of hydrogen → saturated fats.
- The hydrocarbon chains in these fatty acids are, thus, fairly straight and can pack closely together. There are strong attractions between the fatty acids in triglycerides with saturated fatty acids. These fats are solid at room temperature.



## Saturated and Unsaturated Fatty Acids

#### Unsaturated Fatty acids

- Oils have some double bonds between some of the carbons in the hydrocarbon tail, causing bends or "kinks" in the shape of the molecules.
- Because some of the carbons share double bonds, they're not bonded to as many hydrogen as they could if they weren't double bonded to each other. These oils are called **unsaturated fats** .
- Because of the kinks in the hydrocarbon tails, unsaturated fats can't pack as closely together, making them liquid at room temperature.
- unsaturated fats are "healthier" than the saturated ones.



#### **CHEMICAL PROPERTIES**

#### 1. Hydrolysis

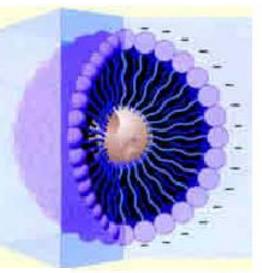
The fats are hydrolyzed by the enzymes *lipases* to yield fatty acids and glycerol. The lipases catalyze this reaction at a slightly alkaline pH(7.5 - 8.5) in a stepwise manner. The fats first split to produce *diglycerides*, part of these are then split to *monoglycerides*. Finally, part of the monoglycerides split to yield *fatty acid* and *glycerol*.

| $H_2C - OOC.R_1$                                       | $H_2C \longrightarrow OOC.R_1$ |                        |  |  |
|--------------------------------------------------------|--------------------------------|------------------------|--|--|
| $H_{L}^{l} \longrightarrow OOC.R_{2} \longrightarrow$  | $H_{L}^{I} - OOC.R_{2}$        | + R <sub>3</sub> .COOH |  |  |
| $H_2C - OOC.R_3 + H OH$                                | $H_2C - OH$                    |                        |  |  |
| Triglyceride Water                                     | Diglyceride                    | Fatty acid             |  |  |
| $H_2C \longrightarrow OOC.R_1$                         | $H_2C - OOC.R_1$               |                        |  |  |
| $HC \longrightarrow OOC.R_2 + H OH \longrightarrow$    | нс — он                        | + R <sub>2</sub> .COOH |  |  |
| $H_2C - OH$                                            | $H_2C - OH$                    |                        |  |  |
| Diglyceride Water                                      | Monoglyceride                  | Fatty acid             |  |  |
| $H_2C \longrightarrow OOC.R_1 + H OH$                  | H <sub>2</sub> C — OH          |                        |  |  |
| $H_{L}^{I} \longrightarrow OH$ $\longrightarrow$       | HC — OH                        | + R <sub>1</sub> .COOH |  |  |
| $H_2 \dot{C} - OH$                                     | $H_2 C - OH$                   |                        |  |  |
| Monoglyceride Water                                    | Glycerol                       | Fatty acid             |  |  |
| [Radicals R1, R2 and R3 may be similar or dissimilar.] |                                |                        |  |  |

#### 2. Saponification

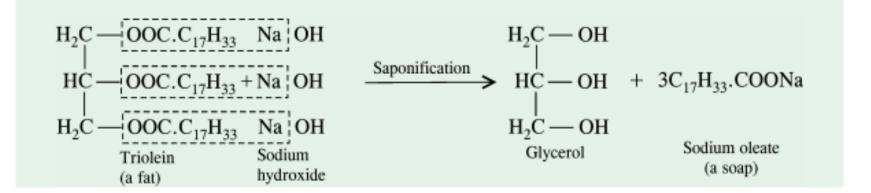
□ The hydrolysis of fats by alkali is called saponification. This reaction results in the formation of glycerol and salts of fatty acids which are called *soaps*.

The soaps are of two types : hard and soft.


#### Hard soaps

such as the common bar soaps are the sodium salts of the higher fatty acids.

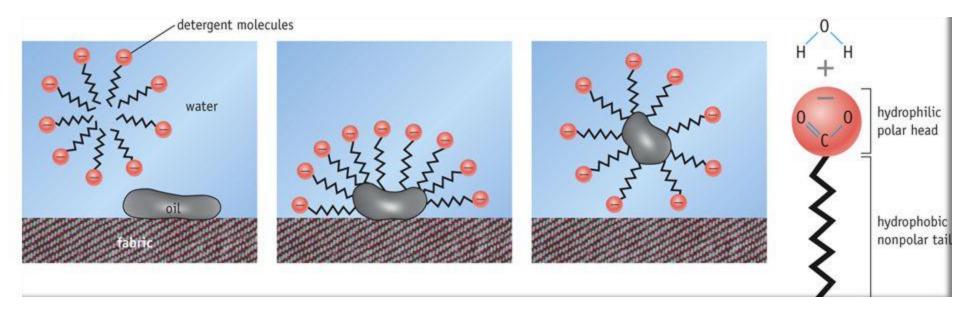
#### Soft soaps

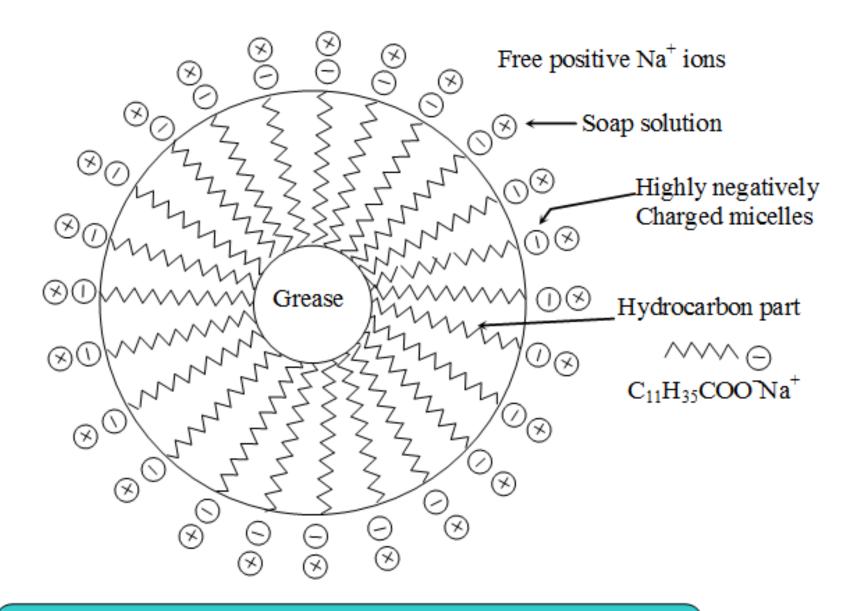

are the potassium salts of higher fatty acids and are market as semisolids or pastes.

The fatty acid salts of calcium, magnesium, zinc and lead are, however, insoluble in water. Calcium soaps are used industrially as lubricating greases. Zinc soaps are employed in the manufacture of talcum powder and other cosmetics. Lead and magnesium soaps are used in paints industry to hasten the process of drying



#### Soaps consist of fatty acids


In this schematic drawing of a soap micelle, the nonpolar tails of the fatty acids are directed inward, where they interact with the greasy matter to be dissolved. The negatively-charged heads are located at the surface of the micelle, where they interact with the surrounding water. Membrane proteins, which also tend to be insoluble in water, can also be solubilized in this way by extraction of membranes with detergents.




When greasy dirt is mixed with soapy water, the soap molecules arrange themselves into tiny clusters called micelles.

The water-loving (hydrophilic) part of the soap molecules sticks to the water and points outwards, forming the outer surface of the micelle.

The oil-loving (hydrophobic) parts stick to the oil and trap oil in the center where it can't come into contact with the water. With the oil tucked safely in the center, the micelle is soluble in water. As the soapy water is rinsed away the greasy dirt goes along with it.

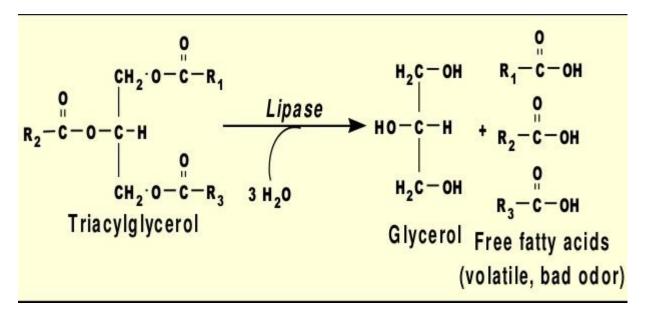




Cleansing action of soap. Soap micelle entraps the oily dirt particle

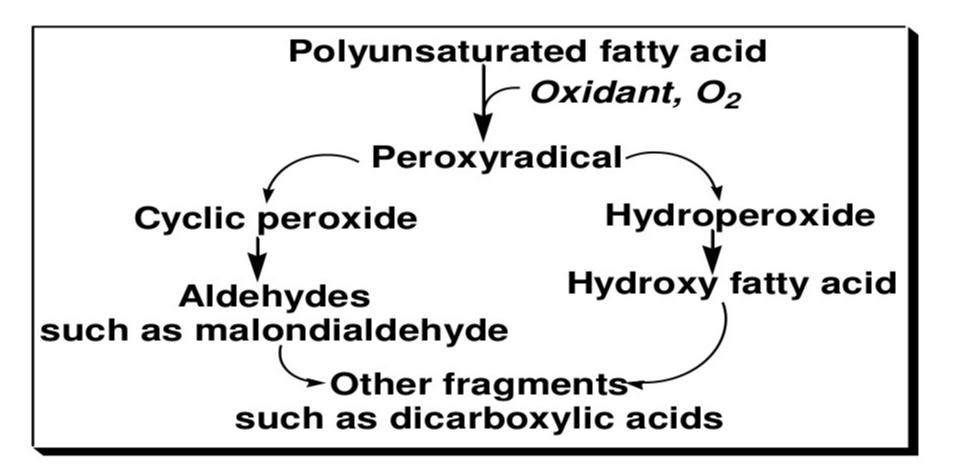
# Rancidity

# **Definition:**


- It is a physico-chemical change in the natural properties of the fat leading to the development of unpleasant odor or taste or abnormal color particularly on aging after exposure to atmospheric oxygen, light, moisture, bacterial or fungal contamination and/or heat.
- Saturated fats resist rancidity more than unsaturated fats that have unsaturated double bonds.

# **Types and causes of Rancidity:**

- 1. Hydrolytic rancidity
- 2. Oxidative rancidity
- 3. Ketonic rancidity


# **1-Hydrolytic rancidity**:

- It results from slight hydrolysis of the fat by lipase from bacterial contamination leading to the liberation of free fatty acids and glycerol at high temperature and moisture.
- Volatile short-chain fatty acids have unpleasant odor.



# **2-Oxidative Rancidity**:

- It is oxidation of fat or oil catalyzed by exposure to oxygen, light and/or heat producing peroxide derivatives which on decomposition give substances, e.g., peroxides, aldehydes, ketones and dicarboxylic acids that are toxic and have bad odor.
- This occurs due to oxidative addition of oxygen at the unsaturated double bond of unsaturated fatty acid of oils.



# **3-Ketonic Rancidity:**

 It is due to the contamination with certain fungi such as Asperigillus Niger on fats such as coconut oil.

- Ketones, fatty aldehydes, short chain fatty acids and fatty alcohols are formed.
- Moisture accelerates ketonic rancidity.

# Prevention of rancidity is achieved by:

- 1. Avoidance of the causes (exposure to light, oxygen, moisture, high temperature and bacteria or fungal contamination). By keeping fats or oils in wellclosed containers in cold, dark and dry place (i.e., good storage conditions).
- 2. Removal of catalysts such as lead and copper that catalyze rancidity.
- 3. Addition of anti-oxidants to prevent peroxidation in fat (i.e., rancidity). They include phenols, naphthols, tannins and hydroquinones. The most common natural antioxidant is vitamin E that is important in vitro and in vivo.

# Hazards of Rancid Fats:

- The products of rancidity are toxic, i.e., causes food poisoning and cancer.
- Rancidity destroys the fat-soluble vitamins (vitamins A, D, K and E).
- 3. Rancidity destroys the polyunsaturated essential fatty acids.
- Rancidity causes economical loss because rancid fat is inedible.

#### **REACTIONS INVOLVING DOUBLE BOND**

#### 1. Hydrogenation

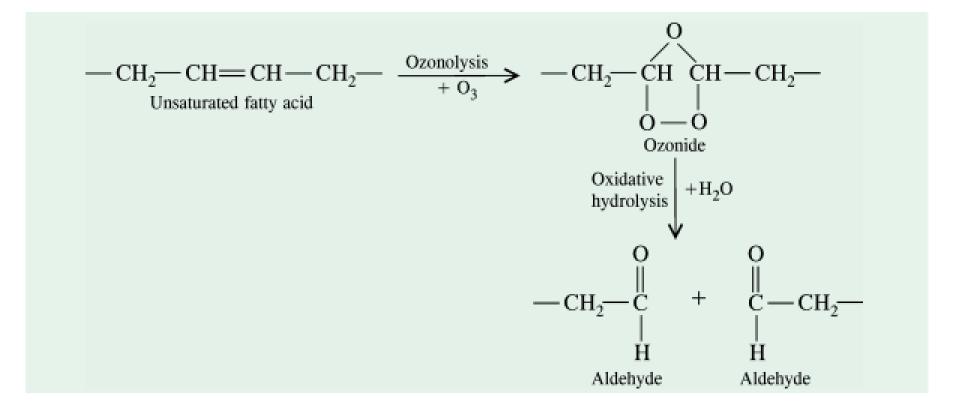
- Unsaturated fatty acids, either free or combined in lipids, react with gaseous hydrogen to yield the saturated fatty acids.
- The reaction is catalyzed by platinum, palladium or nickel. The addition of hydrogen takes place at the C—C double bond (s).
- Thus, 1 mole of oleic, linoleic or linolenic acid reacts with 1, 2 or 3 moles of hydrogen respectively to form stearic acid.

$$CH_{3}(CH_{2})_{7}\overset{10}{CH} = \overset{9}{CH}(CH_{2})_{7}COOH + H_{2}\overset{Pt, Pd or Ni}{\xrightarrow{}} CH_{3}(CH_{2})_{7}\overset{10}{CH_{2}} - \overset{9}{CH}_{2}(CH_{2})_{7}COOH$$
  
Oleic acid CH\_{2}(CH\_{2})\_{7}COOH + CH\_{3}(CH\_{2})\_{7}\overset{10}{CH\_{2}} - \overset{9}{CH}\_{2}(CH\_{2})\_{7}COOH

This reaction is of great commercial importance since it permits transformation of inexpensive and unsaturated liquid vegetable fats into solid fats. The latter are used in the manufacture of candles, vegetable shortenings and of oleomargarine.

#### 2. Halogenation

Unsaturated fatty acids and their esters can take up halogens like  $Br_2$  and  $I_2$  at their double bond (*s*) at room temperature in acetic acid or methanol solution.


$$CH_{3}(CH_{2})_{4}^{13}CH = \underset{\text{Linoleic acid}}{\overset{12}{\text{CHCH}_{2}CH} = \overset{9}{\text{CH}(CH_{2})_{7}COOH} + 2I_{2}}$$

$$\xrightarrow{\text{Room temperature}} CH_{3}(CH_{2})_{4}^{13}CH = \underset{\text{CH}_{2}CH}{\overset{10}{\text{CH}_{2}CH} - \underset{1}{\overset{9}{\text{CH}_{2}CH} - \underset{1}{\overset{9$$

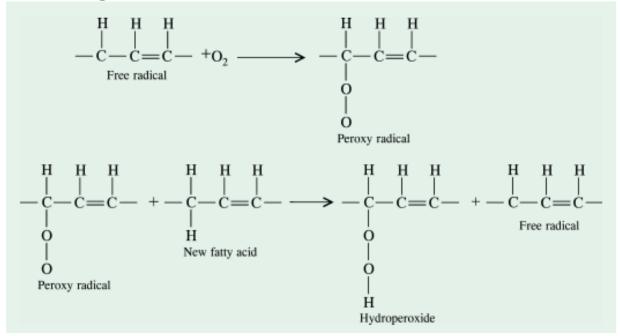
#### **3. Oxidation**

Unsaturated fatty acids are susceptible to oxidation at their double bonds. Oxidation may be carried with **ozone** or **KMnO**<sub>4</sub>.

(a) With ozone – An unstable <u>ozonide</u> is formed which later cleaves by water to give rise to 2 aldehydic groups



(*b*) With KMnO<sub>4</sub> – Under mild conditions, the <u>*glycols*</u> are formed at the sites of double bonds.


$$\begin{array}{c} \mathrm{CH}_{3}(\mathrm{CH}_{2})_{7}\overset{10}{\mathrm{CH}} = \overset{9}{\mathrm{CH}}(\mathrm{CH}_{2})_{7}\mathrm{COOH} \xrightarrow{\mathrm{KMnO}_{4}} & \mathrm{CH}_{3}(\mathrm{CH}_{2})_{7}\overset{10}{\mathrm{CH}} - \overset{9}{\mathrm{CH}}(\mathrm{CH}_{2})_{7}\mathrm{COOH} \\ & & | & | \\ & \mathrm{OH} & \mathrm{OH} \\ & & \mathrm{OH} & \mathrm{OH} \\ \end{array}$$

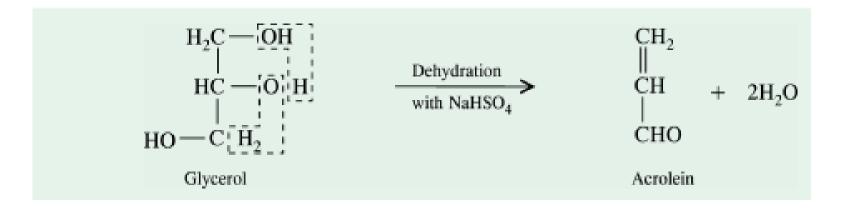
Under vigorous conditions, the same reagent cleaves the molecule at the double bond and oxidizes the terminal portions to the *carboxyl group* 

$$\begin{array}{c} \mathrm{CH}_{3}(\mathrm{CH}_{2})_{7}\overset{10}{\mathrm{CH}} = \overset{9}{\mathrm{CH}}(\mathrm{CH}_{2})_{7}\mathrm{COOH} & \xrightarrow{\mathrm{KMnO}_{4}} & \mathrm{CH}_{3}(\mathrm{CH}_{2})_{7}\mathrm{COOH} & + & \mathrm{HOOC}(\mathrm{CH}_{2})_{7}\mathrm{COOH} \\ & & \mathrm{Oleic\ acid} & & \mathrm{Pelargonic\ acid} & & \mathrm{Azelaic\ acid} \end{array}$$

4. Oxidative rancidity. Oils containing highly unsaturated fatty acids are spontaneously oxidized by atmospheric oxygen at ordinary temperatures. The oxidation takes place slowly and results in the formation of *short chain fatty acids* ( $C_4$  to  $C_{10}$ ) and *aldehydes* which give a rancid taste and odour to the fats. This type of rancidity or rancidification is called 'oxidative rancidity' and is due to a reaction called '*autoxidation*'. Autoxidation proceeds by a free radical mechanism in which the a- methylene group is primarily attacked. A hydrogen atom is removed from an  $\alpha$ -methylene group. This initiates a chain of reactions leading to oxidation (Holman, 1954).

Oxidative rancidity is observed more frequently in animal fats than in vegetable fats. This is due to the presence, in the vegetable oils, of natural 'antioxidants' such as tocopherols (= vitamin E), phenols, naphthols etc., which check autoxidation. Vitamin E is, therefore, some-times added to foods to prevent rancidity. Animal shortenings such as lard are nowadays protected against oxidative rancidity by the addition of synthetic antioxidants such as nordihydroguiaretic acid (NDGA), tertiary butyl hydroxy anisole (BHA) etc. Linseed oil, a plant oil used as a base for paints, is highly rich in unsaturated fatty acids. It undergoes autoxidation when exposed to air, followed by polymerization to a hard, resinous coating as it 'dries' or oxidizes.




The action of antioxidants is opposed by a group of compounds present in the fats and oils. These accelerate the oxidation of the parent compound and are called *pro-oxidants*. Majority of these substances are formed during the processing and refining of fats. Among the noteworthy pro-oxidants are the copper, iron and nickel salts of organic acids like lactic, etc.

#### **REACTION INVOLVING OH GROUPS**

#### **Dehydration (Acrolein test)**

Fats, when heated in the presence of a dehydrating agent, NaHSO<sub>4</sub> or KHSO<sub>4</sub> produce an unsaturated aldehyde called **acrolein** from the glycerol moiety.

Acrolein is easily recognized by its pungent odour and thus forms the basis of the test for the presence of glycerol in fat molecule



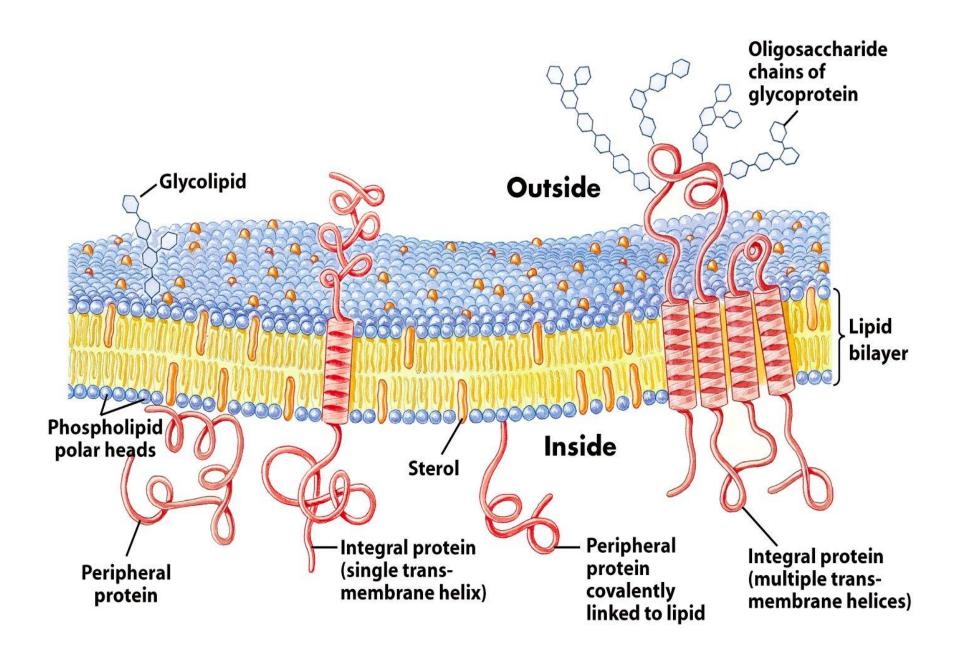
#### QUANTITATIVE TESTS

The reactions described above give valuable information about the chemical nature of fatty acids and the number of hydroxyl groups present in the fat molecule. Such chemical determinations involve various analytical tests. These are called *chemical constants* and include the following:

**1.** Acid value. It is the number of milligrams of KOH required to neutralize the free fatty acids present in 1 gm of fat. The acid number, thus, tells us of the quantity of free fatty acid present in a fat. Obviously, a fat which has been both processed and stored properly has a very low acid number.

**2.** Saponification number. It is the number of milligrams of KOH required to saponify 1 gm of fat. The saponification number, thus, provides information of the average chain length of the fatty acids in the fat. It varies inversely with the chain length of the fatty acids. *The shorter the average chain length of the fatty acids, the higher is the saponification number.* 

3. Iodine value (or Koettstorfer numb


g of fat. T fat. Oils l than the acids in t bonds pr

6. A obtained mixture is, thus, a Acid value refers to the amount of "free" fatty acids in the oil/fat. Saponification value refers to the amount of esters that can be hydrolysed and turned into soap. Both these values are given as mg KOH per g of oil or fat

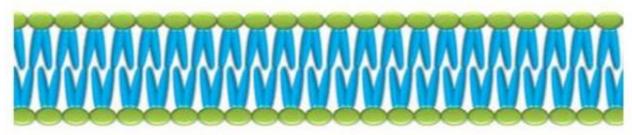
saturation of the fatty acids in the saturation of the fatty acids in the saturation of the fatty acids in the s (133, 127 and 109, respectively) er possess more unsaturated fatty cation as to the number of double

> red to neutralize the acetic acid The treatment of fat or fatty acid OH groups). The acetyl number e, the castor oil has a high acetyl

number (140) occause or mgn coment or a nyuroxy actu, remoteic acid, in it.



**Properties, Structure & Classification** 


# "Good fences make good neighbors"

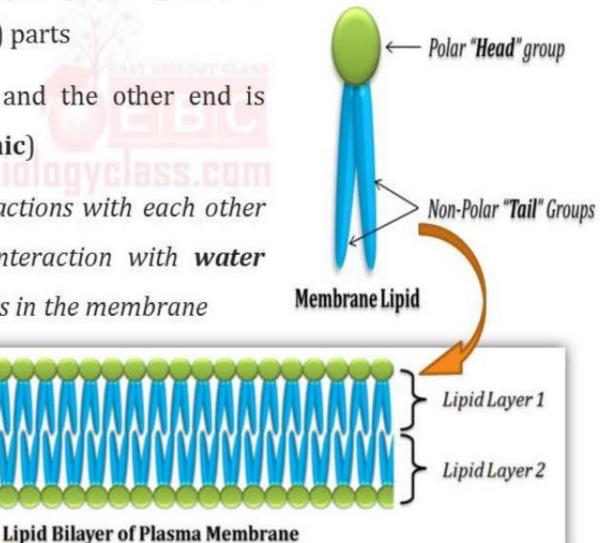
Robert Frost, "Mending Wall," In North of Boston, 1914



#### Biological membrane system:

- Membranes are two layers thick sheath like structures
- Formed by non-covalent assemblage of lipids and proteins
- Mainly consists of Lipids, Proteins and Carbohydrates
- Thickness of membrane: 60 Å (6 nm) to 100 Å (10 nm)
- Membrane forms closed boundaries between different compartments
- Act as barriers to the passage of **polar molecules** and **ions**

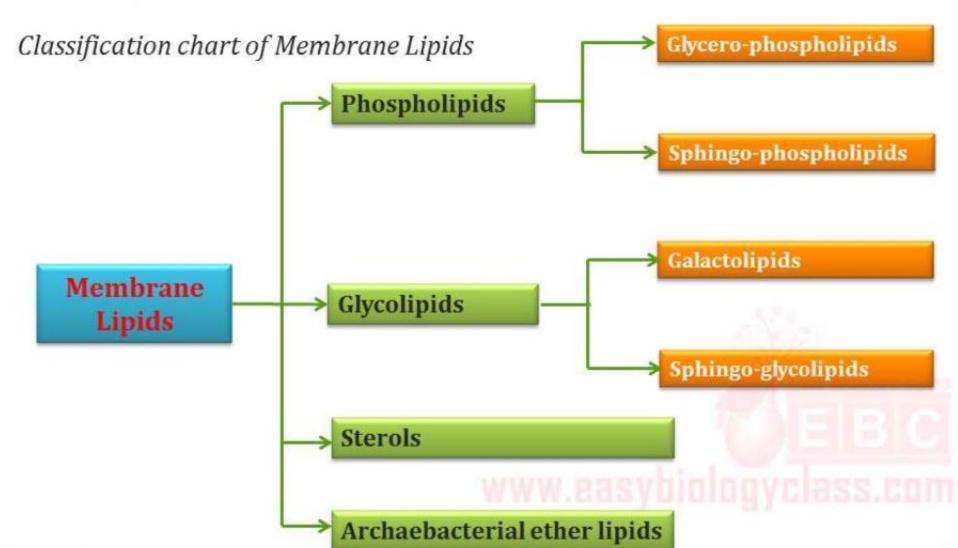



Plasma membrane

Polar Region

Non-Polar Region

Polar Region

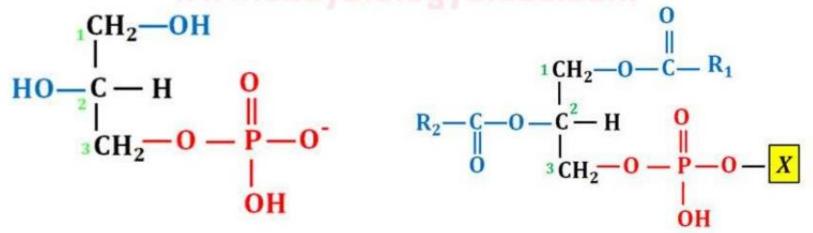

- Membrane lipids have hydrophilic (polar) & hydrophobic (non-polar) parts
- One end is hydrophilic and the other end is hydrophobic (amphipathic)
- Their hydrophobic interactions with each other and their hydrophilic interaction with water direct the packing of lipids in the membrane



- Bio-membranes are asymmetric
- Components of two faces always differ from each other
- Long hydrocarbon chains of fatty acid forms the hydrophobic part
- Hydrophilic moieties of the membrane lipids may be as simple as single –OH at one end of the sterol ring system or they may be much complex
- We commonly represent the polar part of membrane lipid as 'Head' and the non-polar part as 'Tail'

- Membrane lipids are classified based on the properties of 'head' group
- Membrane lipids of Prokaryotes, Eukaryotes and Archaebacteria are grouped into Four major categories:
  - 1. Phospholipids
    - 2. Glycolipids
    - 3. Sterols WWW.easybiologyclass.com
    - 4. Archaebacterial ether lipids

#### Mind-Map:

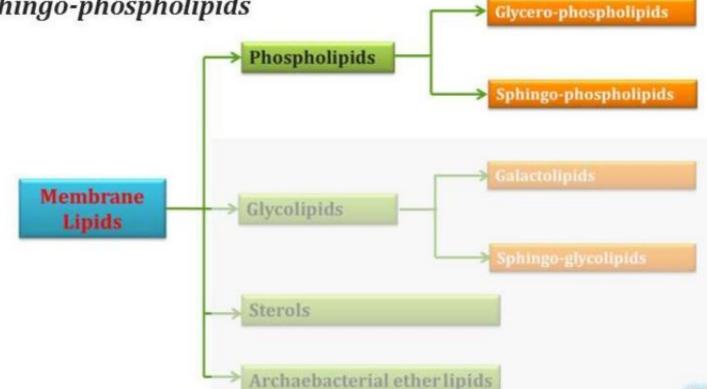



Membrane lipids classification:

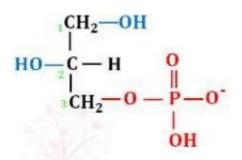
- 1. Phospholipids
  - Glycerophospholipids
  - Sphingo-phospholipids
- 2. Glycolipids
  - Galactolipids (sulfolipids)
  - Sphingo-glycolipids
- 3. Sterols
- 4. Archaebacterial ether lipids

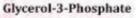
#### (1). Phospholipids:

- Glycerol-3-phosphate is the backbone of all phospholipids
- Here a polar head group is joined to the hydrophobic moiety by a phosphodiester linkage
- Other two –**OH** groups (C1 and C2) are esterified by fatty acids  $(\mathbf{R}_1 \otimes \mathbf{R}_2)$

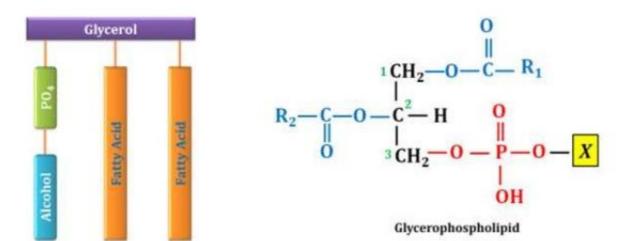



Glycerol-3-Phosphate

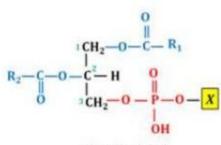

Glycerophospholipid


#### (1). Phospholipids:

- There are two major class of Phospholipids:
  - **Glycero-phospholipids** А.
  - В. Sphingo-phospholipids




- (1). Phospholipids: (A) Glycero-phospholipids:
  - Also called as phosphoglycerides
  - Major lipid component of biological membrane



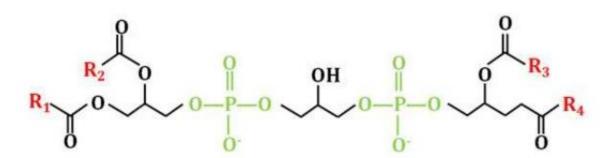



- Consists of glycerol-3-phosphate, whose C1 & C2 esterified by fatty acids
- The C3 is linked to a polar group 'X' Basy bid boy Class.com
- In simplest glycero-phospholipid, the '-X' is H, is called phosphatidic acid



#### Phospho-glycerolipids are of different types based on 'X' group (table)




Glycerophospholipid

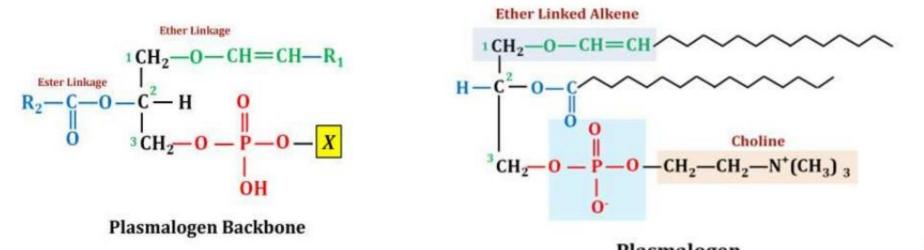
| Name of X – OH       | Formula of - X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phospholipid Name                                    |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Water                | —Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Phosphatidic acid                                    |
| Ethanolamine         | -CH <sub>2</sub> CH <sub>2</sub> NH <sub>3</sub> <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phosphatidylethanolamine                             |
| Choline              | -CH <sub>2</sub> CH <sub>2</sub> N(CH <sub>3</sub> ) <sub>3</sub> <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phosphatidylcholine (Lecithin)                       |
| Serine               | -CH <sub>2</sub> CH(NH <sub>3</sub> <sup>+</sup> )COO <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Phosphatidylserine                                   |
| Glycerol             | -CH <sub>2</sub> CH(OH)CH <sub>2</sub> OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Phosphatidylglycerol                                 |
| Phosphatidylglycerol | $-CH_{2}CH(OH)CH_{2}-0-P-0-CH_{2} 0$ $  0 \\ CH-0-C-R_{1} \\ 0 \\ R_{2}-C-0-CH_{2} \\   0 \\ R_{2}-C-0-CH_{2} \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\   0 \\ $ | Diphosphatidylglycerol<br><mark>(Cardiolipin)</mark> |
| Myo-inositol         | HO HI OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phosphatidylinositol                                 |

#### (1). Phospholipids: (A) Glycero-phospholipids:

- Cardiolipin: an important component of the inner mitochondrial membrane
- It constitutes 20% of the total lipids of inner mitochondrial membrane
- The only other place where cardiolipin can be found is in the membranes of most bacteria

Thus it is an evidence for **endosymbiont** theory




Cardiolipin (Diphosphatidylglycerol)



#### (1). Phospholipids: (A) Glycerophospholipids:

#### **Plasmalogen:**

- They are glycero-phospholipids in which the C1 of glycerol moiety is linked via an α, β-unsaturated ether linkage rather than an ester linkage
- Ethanolamine, choline & serine are the most common plasmalogen heads
- Function of plasmalogens are not well understood

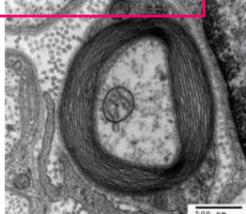


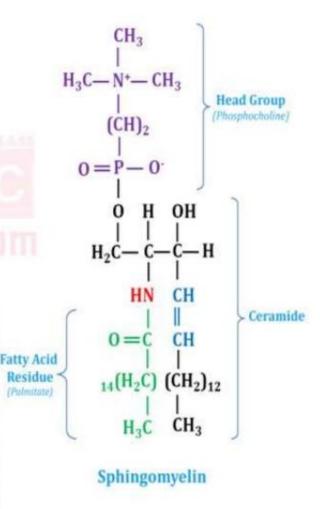
#### (1). Phospholipids: (B). Sphingo-phospholipids:

Major class of membrane lipids

......

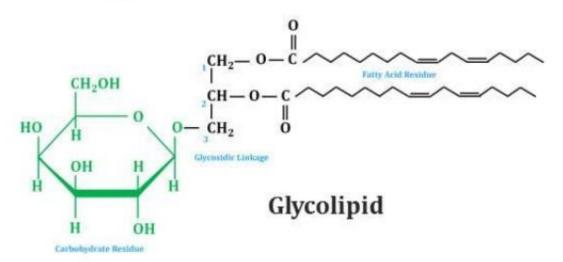
- Named after Sphinx because of their function in the cells was mysterious
- Most of the spingolipids are derivatives of C18 amino alcohol Sphingosine


#### N-acyl fatty acid derivative of sphingosine are known as ceraminde


| Sphingosine           | но н он<br>                                                            | но н он                                                    |
|-----------------------|------------------------------------------------------------------------|------------------------------------------------------------|
|                       | $ \begin{array}{c} H_2C - C - C - H \\   \\ H_3N^+ \\ CH \end{array} $ | $H_2C - C - H$<br>HN CH                                    |
| East Ac               | Ц                                                                      | $\mathbf{o} = \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{H}$ |
| Contine               | (CH <sub>2</sub> ) <sub>12</sub>                                       | R (CH <sub>2</sub> ) <sub>12</sub>                         |
| Sphingo-phospholipid  | ĊH <sub>3</sub>                                                        | CH3                                                        |
| annuhia la musia ca m | Sphingosine                                                            | Ceramide                                                   |

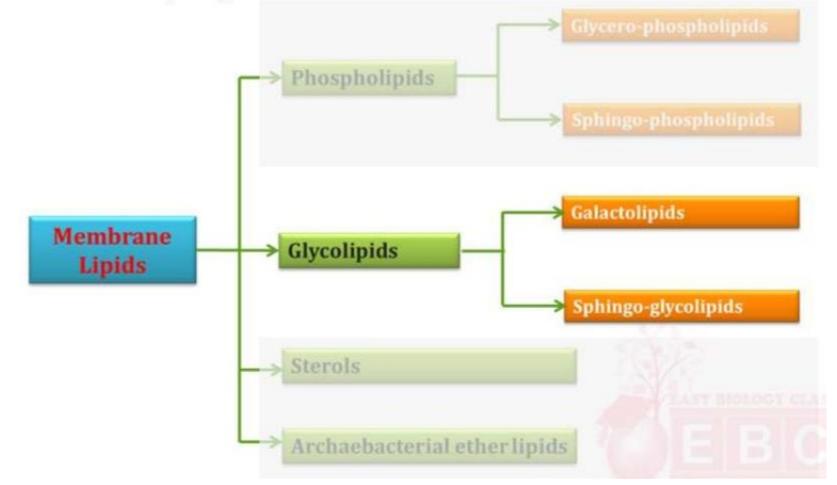
(1). Phospholipids: (B). Sphingo-phospholipids: Sphingomyelins

- Most common sphingolipid
- Make up 10 20% of plasma membrane lipids
- They are ceramides with phosphocoline or phosphoehtanolamine head
- Myelin sheath of nerve cell axons are rich in sphingomyelins


Electron Micrograph of Myelinated Nerves: See the spirally wrapped membrane around each nerve axon. Myelin sheath may be 10 -15 layers thick and the high lipid content makes it an electrical insulator



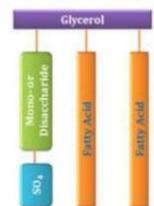



#### (2). Glycolipids:

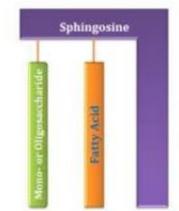
- Lipids conjugated with carbohydrates
- Three main role:
  - Part of biological membrane system
  - Provide energy
    - Markers for cellular recognition



### (2). Glycolipids:

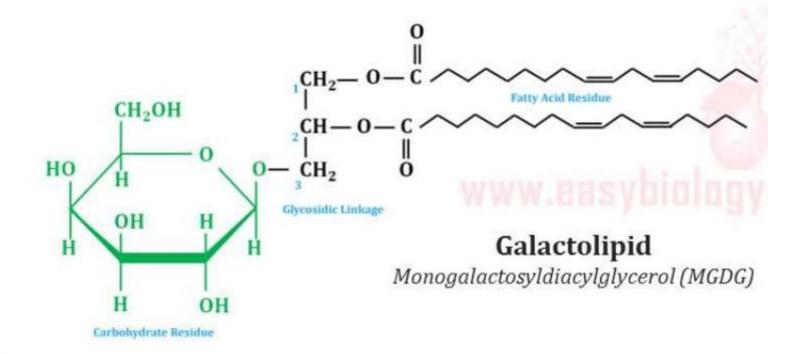

Classification of Glycolipids:




### (2). Glycolipids:

Different class of glycolipids are:

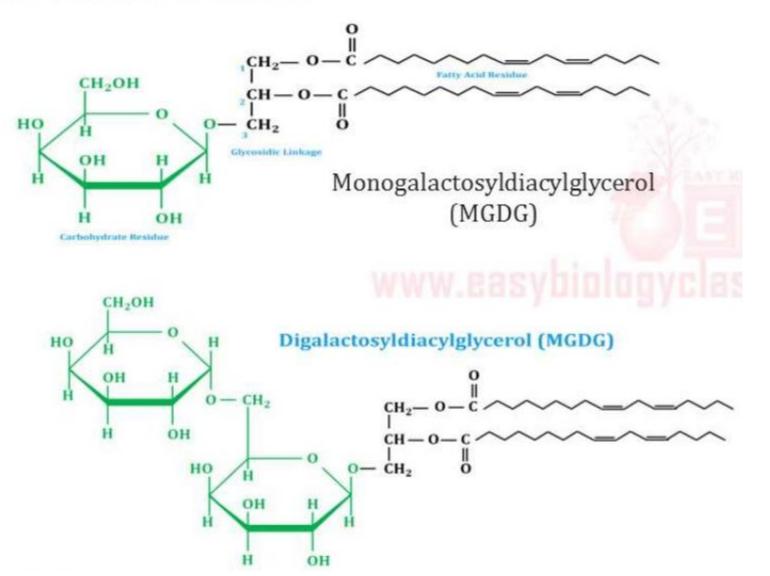
- (A). Glyceroglycolipids: Glycerole backbone with carbohydrates
  - a) Galactolipids
  - b) Sulfolipids




- (B). Sphingo-glycolipids: Sphingosine backbone with carbohydrates
  - a) Cerebrosides
  - b) Globosides
  - c) Gangliosides

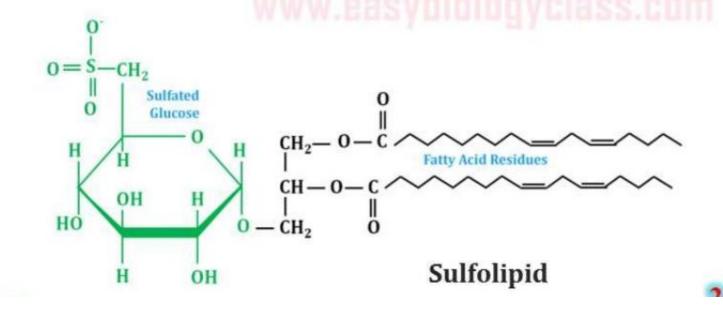


(2). Glycolipids: (A). Glycero-glycolipids: → Galactolipids

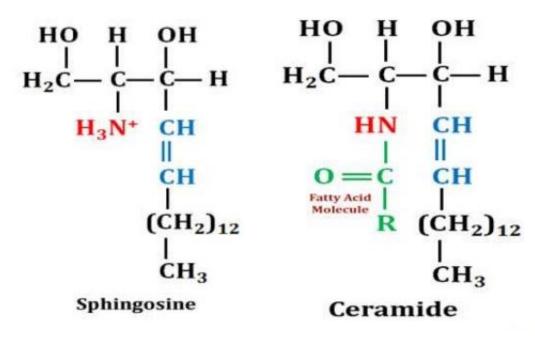

- One or two galactose residues present
- Galactose connected by a glycosidic linkage to C3 of a Glycerol
- C1 and C2 of glycerol are esterified with fatty acids



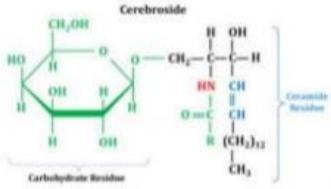
#### (2). Glycolipids: (A). Glycero-glycolipids: → Galactolipids


- Galactolipids are predominant in plant cells
- They are abundant in thylacoid membrane of chloroplasts
- They constitute ~ 70% to 80% of membrane lipids of vascular plants
- Probably they are the most abundant membrane lipids in the biosphere

Galactolipids of chloroplasts:



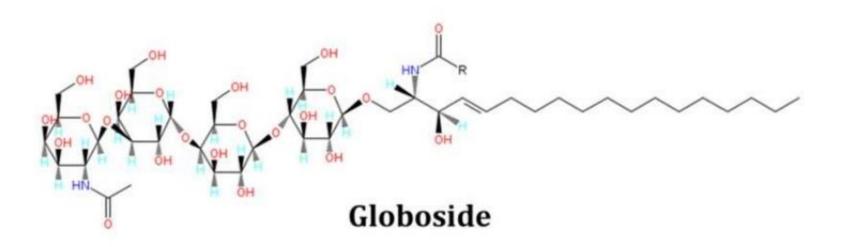

#### (2). Glycolipids: (A). Glycero-glycolipids: $\rightarrow$ Sulfolipids:


- A class of glycero-glycolipid with sulfur containing functional groups
- Sulfonated glucose is joined to the C3 of diacylglycerol in glycosidic linkage
- Plant membranes also contain sulpholipids
- Sulfonate head hold negative charge (like phosphate group in phospholipids)



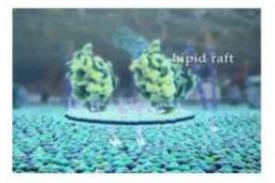
- (2). Glycolipids: (B). Sphingo-glycolipids:
- A category of glycolipid
- Contains an amino alcohol sphingosine instead of glycerol
- N-acyl fatty acid derivative of sphingosine are known as ceramide
- Sphingo-glycolipids includes:
  - a) Cerebrosides
  - b) Gangliosides
  - c) Globosides

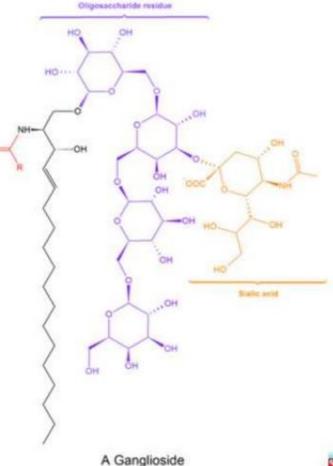



- (2). Glycolipids: (B). Sphingo-glycolipids: a). Cerebrosides:
- It is a ceramide with single sugar residue at the C1-hydroxyl moiety
- Sugar residue can be either glucose or galactose
- Thus two categories: Glucocerebrosides, Galactocerebrosides
- Cerebrosides lack phosphate groups and thus they are nonionic (no charge)
- Abundant in animal muscle and nerve cell membranes
- Galactocerebrosides are typically found in nerves
- Glucocerebrosides are found in other tissues

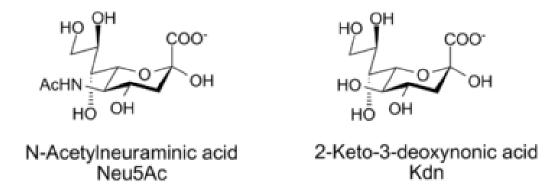


#### (2). Glycolipids: (B). Sphingo-glycolipids: b). Globosides:

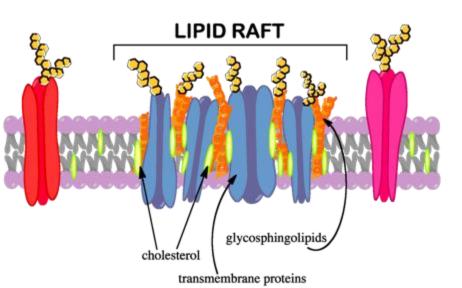

A sphingo-glycolipid with more than one sugars as side chain of ceramide
 Sugars are usually a combination of N-Acetylgalactosamine, D-glucose or D-galactose

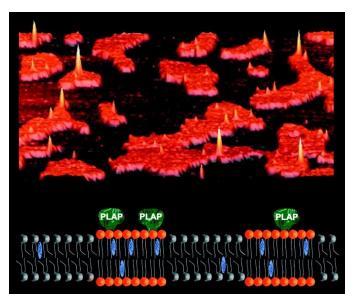

www.easybiologyclass.com




#### (2). Glycolipids: (B). Sphingo-glycolipids: c). Gangleosides:

- A glyco-sphingolipid (ceramide & oligosaccharide) with one or more sialic acids linked on the sugar chain
- Most complex sphingo-glycolipid
- 6% of brain lipids are gangleosides
- First isolated from ganglion of brain cells
- Abundant in lipid-rafts of plasma membrane

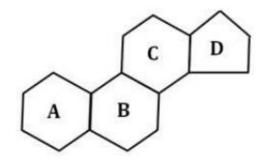



**Sialic acid** is a generic term for the *N*- or *O*-substituted derivatives of <u>neuraminic acid</u>, a <u>monosaccharide</u> with a nine-<u>carbon</u> backbone. It is also the name for the most common member of this group, <u>N-acetylneuraminic acid</u> (Neu5Ac or NANA).



**Lipid rafts** are subdomains of the plasma membrane that contain high concentrations of cholesterol and glycosphingolipids. They exist as distinct liquid-ordered regions of the membrane that are resistant to extraction with nonionic detergents.






- (2). Glycolipids: (B). Sphingo-glycolipids: c). Gangleosides:
- Physiological/Medical significance of Gangleosides:
- Considerable physiological and medical significance
- Act as specific receptors for glycoprotein hormones
- Act as receptors for some bacterial protein toxins such as cholera toxin
- Act as specific determinants of cell-cell recognition (important in growth and differentiation of tissues and in carcinogenesis)
- Tay-Sachs disease is a hereditary disorder of ganglioside breakdown leading to fatal neurological deterioration in the early childhood

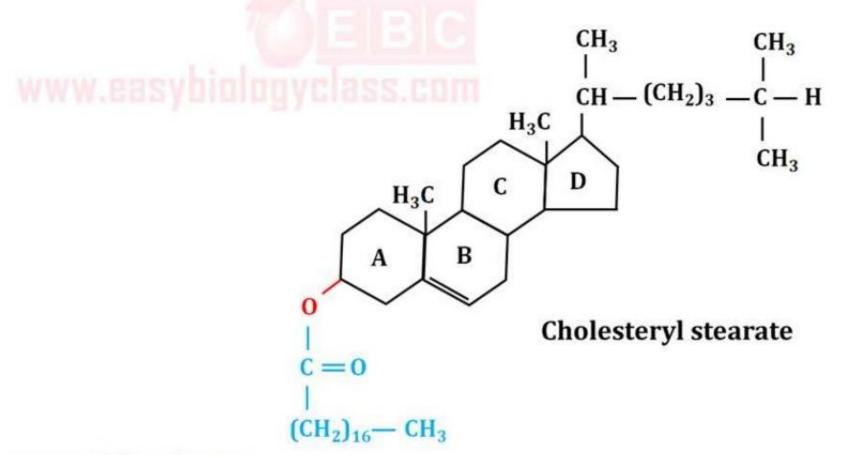
#### (3). Sterols:

Third major class of membrane lipids




Cyclopentanoperhydrophenanthrene

- Usually present in the membranes of eukaryotic cells
- Sterol consists of four fused carbon rings (A, B, C, D) and an alkyl side chain
- Alkyl chain is called 'hydrocarbon side chain'
- Ring **A**, **B** and **C** are with six carbons and Ring **D** is with five carbons
- This fused ring is called the Steroid Nucleus
- Steroid nucleus is derived from **cyclopentanoperhydrophenanthrene**
- Fused ring structure do not allow C C free rotation


#### (3). Sterols:

- Cholesterol is a major sterol of animal membranes
- Constitute about **30-40**% all membrane lipids in animals
- Cholesterol is amphipathic with polar hydroxyl (-OH) 'head' and nonpolar hydrocarbon 'tail'
- The -OH and the hydrocarbon chain are attached to the C3 and C17 of steroid nucleus respectively
  CH<sub>3</sub> CH<sub>3</sub>



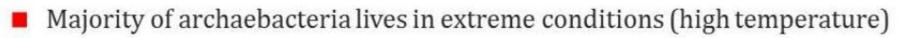
(3). Sterols:

Cholesterol can esterify with long chain fatty acids to form cholesteryl esters such as cholesteryl stearate

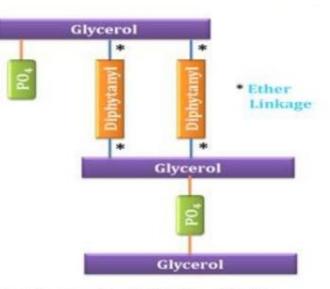


#### (3). Sterols:

- In mammals, cholesterol is the metabolic precursor of steroid hormones
- Cholesterol very rarely found in plants (other sterols occurs in plants)
- Stigmasterol: important membrane sterol in plants (phytosterol)
- Campesterol and sitosterol are other plant sterols
- Ergosterol: sterol found in fungal membrane system




#### (3). Sterols:


- Bacteria cannot synthesize any sterol
- Thus bacterial membrane generally lacks sterol
- Some bacteria can incorporate exogenous sterol in to their membrane
- Lanosterol: sterol precursor of animals and fungi
- **Cycloartenol:** sterol precursor of plants
- Both Lanosterol and Cycloartenol are derived from the cyclization of triterpenoid - squalene

#### (4). Archaebacterial ether lipids:

- Fourth major class of membrane lipids
- They are membrane lipids of archaebacteria
- Absent in prokaryotes and eukaryotes



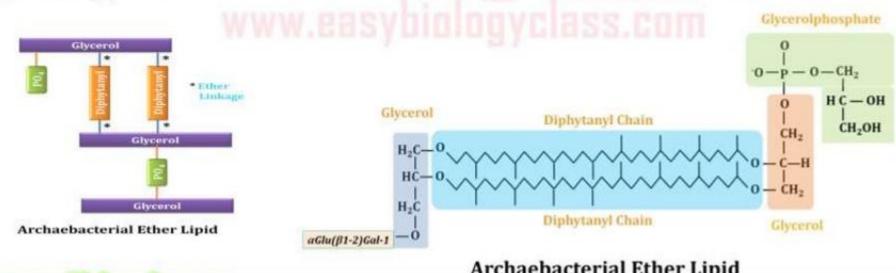
- Archaebacterial ether lipids contain long (32C) branched hydrocarbon chains linked at both end to glycerol
- Linkages are through ether bonds (R O R')



**Archaebacterial Ether Lipid** 



- (3). Archaebacterial ether lipids:
- Ether bonds are more stable than ester bonds
- They are twice the length of phospholipids and sphingolipids

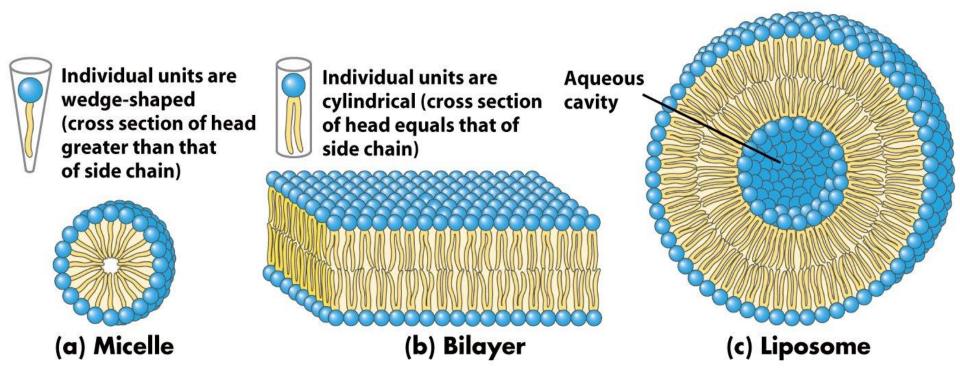

R

к

ΌŔ

R

- They span the width of the surface membrane
- At each end of the molecule **two glycerol** moieties are present
- This glycerol is linked to either phosphate or sugar residues




#### AMPHIPATHIC LIPIDS SELF-ORIENT AT OIL:WATER INTERFACES

#### •They Form Membranes, Micelles, Liposomes, & Emulsions

- In general, lipids are insoluble in water since they contain a predominance of non-polar (hydrocarbon) groups. However, fatty acids, phospholipids, sphingolipids, bile salts, and, to a lesser extent, cholesterol **contain polar groups**. Therefore, part of the molecule is hydrophobic, or water-insoluble; and part is hydrophilic or water-soluble. Such molecules are described as **amphipathic.** They become oriented at **oil : water** interfaces with the polar group in the water phase and the nonpolar group in the oil phase.
- •A bilayer of such amphipathic lipids has been regarded as a basic structure in **biologic membranes**
- •When a critical concentration of these lipids is present in an aqueous medium, they form **micelles.**
- •Aggregations of bile salts into micelles and liposomes and the formation of mixed micelles with the products of fat digestion are important in facilitating absorption of lipids
- •Liposomes may be formed by sonicating an amphipathic lipid in an aqueous medium. They consist of spheres of lipid bilayers that enclose part of the aqueous medium. They are of potential clinical use—particularly when combined with tissue specific antibodies as carriers of drugs in the circulation, targeted to specific organs, eg, in cancer therapy.
- In addition, they are being used for gene transfer into vascular cells and as carriers for topical and transdermal delivery of drugs and cosmetics.

•Emulsions are much larger particles, formed usually by nonpolar lipids in an aqueous medium. These are stabilized by emulsifying agents such as amphipathic lipids (eg, lecithin), which form a surface layer separating the main bulk of the nonpolar material from the aqueous phase

